
Technical Appendix for “A Systematic Evaluation of Real-Time
Audio Score Following for Piano Performance”

This document contains technical definitions for the score follower models described in Section 3
of the paper.

1 Definitions
The following definitions will be used throughout this document.

• Observations O = {o1, . . . , oN}: The input features computed from an on-line audio stream.
Each observation oi ∈ RF is a F -dimensional vector, with F depending on the type of features
(e.g., chroma features has F = 12, etc.).

• Reference features R = {r1 . . . , rNref
}: Audio features for the synthesized score. Scores

were synthesized using Fluidsynth. Each ri ∈ RNref is an a F -dimensional vector. We slightly
abuse notation and use R as a matrix in RNref ×F where the i-th row corresponds to r⊤

i .

• Hidden states (score positions): Z = {z1, . . . , zN}, with zi ∈ {0, 1}Nref and ∥zi∥1 = 1.
These variables are one-hot encodings representing the ‘indices’ of a frame in the reference
features.

Throughout this document, we use Aij (i.e., not boldfaced) to refer to the (i, j)-th element of matrix
A. Additionally, in the algorithms, we use A[i, j] to refer to the (i − 1, j − 1)-th element of the
matrix, following Python-style indexing (i.e., starting from 0).

2 Online Time Warping Dixon

2.1 Algorithm Description

The OnlineTimeWarpingDixon algorithm extends classical Dynamic Time Warping (DTW) for
real-time applications by limiting computations to a sliding window of recent frames. Rather than
computing the full cost matrix D ∈ RNref ×N for the entire sequences, the algorithm updates only
a localized region, thereby reducing the overall computational complexity.

The basic DTW recurrence is given by

D[i, j] = d(ri, oj) + min


Di−1,j

Di,j−1
Di−1,j−1

where d(ri, oj) denotes the local distance between the i-th reference feature and the j-th input
feature. In the online setting, however, only a subset of the accumulated costs is updated as each
new input feature is received, and an “adaptive diagonal” is computed through the cost matrix.
This adaptive diagonal—representing the most likely alignment based on available data—allows
the algorithm to avoid the full matrix computation typical of DTW.

1



At each iteration, the algorithm performs the following steps:

• It decides whether to retrieve a new input feature (advancing the input index) or to move for-
ward in the reference sequence (updating the current position), based on a selection function
that evaluates the normalized costs along the current matrix edges.

• It updates the accumulated cost matrix and a corresponding path-length matrix within a
fixed window, using local distance computations.

• It calculates an adaptive diagonal through the cost matrix, which is then used to select a
candidate alignment point. This point is appended to the warping path, ensuring a smooth,
incremental update in accordance with the online constraint.

• Latency and run count statistics are updated concurrently to guarantee real-time processing
capability.

Algorithm 1 outlines the entire procedure.

Algorithm 1: OnlineTimeWarpingDixon
Input:
1. on ∈ RF : input features 5. current_position ∈ [0, Nref − 1]
2. R ∈ RNref×F : reference features 6. s ∈ Z>0: step size
3. D ∈ R(Nref+1)×2: accumulated cost matrix 7. d(·, ·) : RF × RF → R
4. n ∈ [0, N − 1]: input index 8. w ∈ Z>0: window size
Output: Updated current_position and cost matrix D

1 // Initialization
2 Set previous← None and runCount← 0;
3 EvaluatePathCost(n, current_position);
4 // Main Online Loop
5 while input remains and current_position < Nref do

// Update input branch: advance input pointer
6 t← t + 1 (retrieve o[t]);
7 for k = current_position− w + 1 to current_position do
8 if k ≥ 0 then
9 EvaluatePathCost(t, k);

// Update reference branch: if cost structure suggests
10 if boundary costs indicate advancing the reference then
11 j ← j + 1;
12 for k = t− w + 1 to t do
13 if k ≥ 0 then
14 EvaluatePathCost(k, j);

15 icand ← arg min{ normalizedCost(i) } ; // pick the index i in the current
boundary window that yields the lowest normalized cost

16 if direction = previous then
17 runCount ← runCount + 1
18 else
19 runCount ← 1

20 current_position← min
(
max(current_position, icand), current_position + s

)
;

21 return (current_position, D)

2



3 Online Time Warping Arzt
The OnlineTimeWarpingArzt algorithm is a different variant of OLTW that uses a normalized
version of the accumulated cost matrix (normalized by the length of the path). Algorithm 2 shows
this procedure.

Algorithm 2: OnlineTimeWarpingArzt
Input:
1. on ∈ RF : input features 5. current_position ∈ [0, Nref − 1]
2. R ∈ RNref×F : reference features 6. s ∈ Z≥0: step size
3. D ∈ R(Nref+1)×2: accumulated cost matrix 7. d(·, ·) : RF × RF → R
4. n ∈ [0, N − 1]: input index 8. w ∈ Z≥0: window size
Output: Updated current_position and D
// Initialization for first step only

1 D[i, j]←∞ for all i, j
// Initialization for every step

2 min_costs←∞
3 im ← max(current_position− s, 0) ; // Minimum index to consider
4 ws ← max(current_position− w, 0) ; // Start of the window
5 we ← min(current_position + w, Nref) ; // End of the window
6 for i← 0 to we − ws − 1 do
7 c[i]← d (R[ws + i], on)

// Main OLTW loop
8 is ← ws

9 ic ← 0
10 if is = 0 and n = 0 then
11 D[1, 1]←

∑
i c[i]

12 min_costs← D[1, 1]
13 im ← 0
14 while is < we do
15 if not (is = 0 and n = 0) then

16 D[is + 1, 1] = c[ic] + min

 D[is, 1]
D[is + 1, 0]
D[is, 0]

17 norm_cost← D[is + 1, 1]
(n + is + 1)

18 if norm_cost < min_costs then
19 min_costs← norm_cost
20 im ← is

21 ic ← ic + 1
22 is ← is + 1

// Update Accumulated cost matrix
23 for i← 0 to Nref − 1 do
24 D[i, 0]← D[i, 1]
25 D[i, 1]←∞

// Update current position without going backwards and limiting step
26 if n = 0 then
27 current_position← min

(
max(current_position, im), current_position

)
28 else
29 current_position← min

(
max(current_position, im), current_position + s

)
30 return current_position, D

3



4 Hidden Markov Model

4.1 Model definition

Hidden Markov Models (HMMs) are a probabilistic state-space model. The joint probability dis-
tribution of the full sequence of observations and hidden states is given as

p(o1, . . . , oN , z1, . . . , zN ) = p(z1)
[

N∏
n=2

p(zn | zn−1)
]

N∏
n=1

p(on | zn) (1)

Where

1. p(zn | zn−1) are the transition probabilities, and are commonly represented by a matrix

Aij = p(zn,i = 1 | zn−1,j = 1) (2)

where zm,k represent the k-th component of the m-th hidden state, with 0 ≤ Aij ≤ 1 and∑
j Aij = 1.

2. p(on | zn) are the observation probabilities. We model these probabilities using a parametric
distribution in the form

p(on | zn) =
Nref∏
m=1

p(on | ϕm)zn,m (3)

where ϕm are the parameters of the distribution and zn,m represents the m-th component of
the n-th hidden state vector. We define an observation model as a function O(·) in RF 7→
RNref

O(on | Φ) =


p(on | ϕ1)

...
p(on | ϕNref

)

 (4)

where Φ = {ϕ1, . . . , ϕNref
}

3. p(z1) are the initial probabilities. This is usually parametrize by a vector a whose k-th
component is ak = p(z1,l = 1), and

∑
k ak = 1

4.2 Transition Probabilities

We use a simple transition matrix, with two parameters, pstay and ptrans, each representing the
probability of staying in a state or transitioning to the next state, respectively. In this case, we
restrict all transitions to be strictly forward.

Aij =



pstay if i < Nref and i = j

ptrans if i < Nref and j = i + 1
1−ptrans−pstay

Nref −i−1 i < Nref and if j > i + 1
1 if i = j = Nref

0 otherwise

(5)

4



4.3 Observation Probabilities

We use an exponential distribution and the cosine distance between observation

pi(on | ϕi) = λ exp
(
−λ

[
1− on · ri

∥on∥ ∥ri∥+ ϵ

])
(6)

where 1− on·rn
∥on∥∥rn∥ is the cosine distance between on and rn, and λ > 0 is the rate of the distribution.

To avoid numerical issues due to small values of on or rn, we add a small epsilon.

The parameters of this distribution are ϕi = {λ, ri}. We can then write the observation model as

O(on | R, λ) =


λ exp

(
−λ

[
1− on·r1

∥on∥∥r1∥+ϵ

])
...

λ exp
(
−λ

[
1−

on·rNref

∥on∥
∥∥rNref

∥∥+ϵ

])
)

 (7)

4.4 Inference

For inference use the forward algorithm, described in Algorithm 3.

Algorithm 3: Forward Algorithm
Input:

1. on ∈ RF : input features
2. O(· | R, λ): Observation model
3. A : Transition Matrix
4. a : Initial probabilities
5. α: Forward variable (optional)

Output: Updated current_position, and forward variable α
1 if α is None then
2 transition_prob← a;
3 else
4 transition_prob← A⊤ · α;
5 end
6 observation_prob← O(on | R, λ);
7 α← observation_prob⊙ transition_prob ; // ⊙ is the element-wise product
8 α← α

max(
∑

i
α[i],10−6) ; // Normalize forward variable

9 current_position← arg maxα;
10 return current_position, α

5


