Technical Appendix for “A Systematic Evaluation of Real-Time
Audio Score Following for Piano Performance”

This document contains technical definitions for the score follower models described in Section 3
of the paper.

1 Definitions

The following definitions will be used throughout this document.

o Observations O = {0y, ...,0x}: The input features computed from an on-line audio stream.
Each observation o; € RY is a F-dimensional vector, with F' depending on the type of features
(e.g., chroma features has F' = 12, etc.).

+ Reference features R = {r;...,ry, ,}: Audio features for the synthesized score. Scores
were synthesized using Fluidsynth. Each r; € RNr<f is an a F-dimensional vector. We slightly

abuse notation and use R as a matrix in R/ *Fwhere the i-th row corresponds to r,' .

« Hidden states (score positions): Z = {z1,...,zx}, with z; € {0,1}Vf and ||z;|; = 1.
These variables are one-hot encodings representing the ‘indices’ of a frame in the reference
features.

Throughout this document, we use A;; (i.e., not boldfaced) to refer to the (4, j)-th element of matrix
A. Additionally, in the algorithms, we use A[i, j| to refer to the (i — 1,7 — 1)-th element of the
matrix, following Python-style indexing (i.e., starting from 0).

2 Online Time Warping Dixon

2.1 Algorithm Description

The OnlineTimeWarpingDixon algorithm extends classical Dynamic Time Warping (DTW) for
real-time applications by limiting computations to a sliding window of recent frames. Rather than
computing the full cost matrix D € R¥res XN for the entire sequences, the algorithm updates only
a localized region, thereby reducing the overall computational complexity.

The basic DTW recurrence is given by

Di_1;
D[Z,j] = d(ri, Oj) + min Di,j—l
D 11

where d(r;,0;) denotes the local distance between the i-th reference feature and the j-th input
feature. In the online setting, however, only a subset of the accumulated costs is updated as each
new input feature is received, and an “adaptive diagonal” is computed through the cost matrix.
This adaptive diagonal—representing the most likely alignment based on available data—allows
the algorithm to avoid the full matrix computation typical of DTW.

At each iteration, the algorithm performs the following steps:

o It decides whether to retrieve a new input feature (advancing the input index) or to move for-
ward in the reference sequence (updating the current position), based on a selection function
that evaluates the normalized costs along the current matrix edges.

o It updates the accumulated cost matrix and a corresponding path-length matrix within a
fixed window, using local distance computations.

e It calculates an adaptive diagonal through the cost matrix, which is then used to select a
candidate alignment point. This point is appended to the warping path, ensuring a smooth,
incremental update in accordance with the online constraint.

o Latency and run count statistics are updated concurrently to guarantee real-time processing
capability.

Algorithm 1 outlines the entire procedure.

Algorithm 1: OnlineTimeWarpingDixon

Input:

1. o, € RF: input features 5. current__position € [0, Npef — 1]
2. R € RMretXF: reference features 6. s € Z~q: step size

3. D € RWrettDX2: aecumulated cost matrix 7.d(-,) : RExRF - R

4. n € [0, N —1]: input index 8. w € Zso: window size

Output: Updated current_ position and cost matrix D

=

// Initialization
Set previous < None and runCount < 0;
EvaluatePathCost(n, current_ position);

// Main Online Loop

W N

'y

5 while input remains and current_position < N do
// Update input branch: advance input pointer

6 t<t+1 (retrieve o[t]);

7 for k = current__position — w 4+ 1 to current position do

8 if £ > 0 then

9 L L EvaluatePathCost(t, k);
// Update reference branch: if cost structure suggests

10 if boundary costs indicate advancing the reference then

11 j—i+1

12 fork=t—w+1totdo

13 if k> 0 then

14 L L EvaluatePathCost(k, j);

15 icand < arg min{ normalizedCost (i) } ; // pick the index i in the current
boundary window that yields the lowest normalized cost

16 if direction = previous then

17 L runCount < runCount + 1

18 else

19 L runCount < 1

20 current_ position <— min (max(current_position, icand), current_ position + s);

21 return (current_ position, D)

3 Online Time Warping Arzt

The OnlineTimeWarpingArzt algorithm is a different variant of OLTW that uses a normalized
version of the accumulated cost matrix (normalized by the length of the path). Algorithm 2 shows

this procedure.

Algorithm 2: OnlineTimeWarpingArzt

Input:

1. o, € RF: input features

2. R € RNwetX I reference features

3. D € RWrert1)X2: gccumulated cost matrix

4. n € [0, N — 1]: input index

Output: Updated current_ position and D

// Initialization for first step only
1 D[i, j] « oo for all ¢,

// Initialization for every step

2 min_costs < oo
3 iy, < max(current_ position — s, 0) ;
4 wg < max(current_ position — w, 0) ;
5 we < min(current_ position + w, Nyef) ;
6 for i <+ 0 to w, —ws — 1 do
7 | cli] « d(Rlws + 1], 0,)
// Main OLTW loop
8 1s < Ws
9 i, <0

10 if iy =0 and n = 0 then

11 D[1,1] < >, c[i]

12 min__costs «+ DJ[1,1]

13 im — 0

14 while i, < w, do

15 if not (i; =0 and n =0) then

Dlis, 1]
16 Dl[is + 1,1] = c[i] + min{ D[is + 1,0]
Dlis, 0]
D[i, +1,1]
17 norm_ cost ¢ ——
(n+4is+1)
18 if norm__cost < min__costs then
19 min_costs < norm_ cost
20 L T, — g
21 Te & 1.+ 1
22 i 1s+ 1

// Update Accumulated cost matrix
23 for i < 0 to N,,y— 1 do

24 DJ:, 0] + D[, 1]

25 DJ[i,1] < o0

26 if n =0 then

5. current_ position € [0, Nyer — 1]
6. s € Z>o: step size
7.d(-,) : RF xRF SR

8. w € Z>¢: window size

// Minimum index to consider
// Start of the window
// End of the window

// Update current position without going backwards and limiting step

27 current_ position < min (max(currentiposition, im)s currentiposition)
28 else
29 current_ position <— min (max(current_position, im), current_ position + s)

30 return current_ position, D

4 Hidden Markov Model

4.1

Model definition

Hidden Markov Models (HMMs) are a probabilistic state-space model. The joint probability dis-
tribution of the full sequence of observations and hidden states is given as

N N
p(o1,...,0N,21,...,2N) = p(21) [H p(Zn | Zn—l)] I plon | zn) (1)
n=2 n=1

Where

1. p(zn | Zn—1) are the transition probabilities, and are commonly represented by a matrix

Aij=p(zni=1]2p-1;=1) (2)

where 2, ;, represent the k-th component of the m-th hidden state, with 0 < A;; < 1 and

2. p(oy | z,,) are the observation probabilities. We model these probabilities using a parametric

distribution in the form
Nrcf

plon | zn) = [] plon | ¢m)*m (3)
m=1

where ¢, are the parameters of the distribution and zj, ,, represents the m-th component of
the n-th hidden state vector. We define an observation model as a function O(-) in R
RNref

p(on | ¢1)
O, | @) = z)
p(on | (ZsNref)
where ® = {¢1,...,¢n,.,}

3. p(z1) are the initial probabilities. This is usually parametrize by a vector a whose k-th

4.2

component is ap = p(zlyl =1),and Y par =1

Transition Probabilities

We use a simple transition matrix, with two parameters, pgiqy and pirans, €ach representing the
probability of staying in a state or transitioning to the next state, respectively. In this case, we
restrict all transitions to be strictly forward.

DPstay if 1 < Nref and ¢ =)
DPtrans ifi < Nref and j=1+1
Aij = % i < Nyep and if j > i +1 (5)
if :.7 = Nref
0 otherwise

4.3 Observation Probabilities
We use an exponential distribution and the cosine distance between observation

plon | 69) = Nexp (<A [1 - ot |) (6)

lon]l flri]l + ¢

where 1— m is the cosine distance between o,, and r,,, and A\ > 0 is the rate of the distribution.

To avoid numerical issues due to small values of o, or r,, we add a small epsilon.

The parameters of this distribution are ¢; = {A,r;}. We can then write the observation model as

A\ exp (—)\ [1 - WD
O(o, | R, A) = E "
Aexp <—)\ [1 OnTN,))

ol . [F+e

4.4 Inference

For inference use the forward algorithm, described in Algorithm 3.

Algorithm 3: Forward Algorithm
Input:
1. 0, € RF: input features
2. O(- | R, A): Observation model
3. A : Transition Matrix
4. a : Initial probabilities
5. a: Forward variable (optional)
Output: Updated current_ position, and forward variable «
if a is None then
‘ transition_prob < a;
else
‘ transition_prob « AT - q;
end
observation_prob < O(o, | R, \);
« < observation_prob © transition_prob ; // © is the element-wise product
o max(ziz[i],lo_G) ; // Normalize forward variable

9 current_ position <— arg max o;
10 return current position, o

® N O Ot A W =

